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Abstract

An efficient way to treat two-dimensional (2D) constant-time (CT) NMR data using the filter diagonalization method (FDM) is

presented. In this scheme a pair of N- and P-type data sets from a 2D CT NMR experiment are processed jointly by FDM as a single

data set, twice as large, in which the signal effectively evolves in time for twice as long. This scheme is related to ‘‘mirror-image’’

linear prediction, but with the distinction that the data are directly used, without any preprocessing such as Fourier transformation

along one dimension, or point-by-point reflection. As the signal has nearly perfect Lorentzian line shape in the CT dimension, it can

be efficiently handled by the FDM approach. Applied to model and experimental signals, the scheme shows significant resolution

improvement, and appears to tolerate noise reasonably well. Other complex aspects of multidimensional FDM are discussed and

illustrated.
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1. Introduction

Many protein backbone NMR experiments on uni-

formly labeled molecules employ a fixed, or constant

time (CT) evolution [1] period, 2T, to encode chemical

shift information, as demonstrated by Vuister and Bax
[2] for the CT 13C–1H two-dimensional heteronuclear

single-quantum correlation (2D HSQC) experiment [3].

In some cases the chemical shift encoding can be carried

out in a fixed delay that is already present for coherence

transfer to another spin, for example in the CT-HNCO

[4] experiment, thereby minimizing the total time be-

tween excitation and acquisition. In other cases the

constant time period serves to decouple the homonu-
clear carbon–carbon couplings, leading to a sharp sin-

glet instead of a broader multiplet [1,2]. The CT signals

typically show almost no decay in the CT dimension

with typical times 2T, as the residual line width is de-

termined by the quality of the magnetic field homoge-

neity, which, with modern shimming, is excellent.

However, the Fourier time–frequency uncertainty prin-

ciple places a strict bound on the achievable resolution:
using Fourier transform (FT) analysis, the line width in

the CT dimension cannot be narrower than that of a sine

cardinal (‘‘sinc’’) function line shape corresponding to

acquisition over time T. Apodization of the CT signal,

to reduce the sinc-function oscillations around the base

of the peaks, inevitably increases this width further.

Because data acquisition is limited to the interval

½0; T �, these CT experiments naturally attract the atten-
tion of alternative strategies aimed at overcoming the

artificial line width imposed by Fourier transformation

of data sharply truncated at time T. Previous methods

have included random sampling in the ½0; T � interval in
conjunction with maximum entropy reconstruction

(MaxEnt) [5] and linear prediction (LP) extrapolation

followed by Fourier transformation using a milder
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apodization function [6]. In practice, the LP extrapola-
tion along t1 is carried out in a trace-by-trace fashion
after Fourier transformation along the running time, t2,
phasing, and isolation of the absorption-mode data in

F2. The expected phase behavior of the interferogram
can be used to stabilize the LP coefficients using an ar-

tificial reflection of the data around t1 ¼ 0 [7], a method
now designated ‘‘mirror image LP.’’ Mirror image LP is

quite routinely used in data work up [8], whereas non-
uniform time grid sampling is incompatible with con-

ventional FT analysis, limiting the popularity of the

MaxEnt approach. In practice, one-dimensional time-

domain extension of each interferogram to ½0; 2T �, or
sometimes ½0; 4T �, is carried out before Fourier trans-
formation along t1. Evidently, the achievable resolution
is still limited by the actual length of the data set sub-

mitted for FT processing, becoming twice, or four times
as fine, respectively, in F1. This estimate is overly opti-
mistic, though. In actual fact, the true resolution en-

hancement delivered by mirror image LP is variable,

depending on the filter length, the noise level, and other

variables, and often falls well short of even this rather

modest theoretical limit.

We present an alternative, and more aggressive, way

to treat CT NMR data using the multidimensional filter
diagonalization method (FDM) [9–11]. In particular, we

show that it is possible to combine either N- and P-type

phase modulated data sets, or sin- and cos-type ampli-

tude modulated data sets, directly in the time domain.

The N/P signals arise naturally when coherence transfer

pathway selection by pulsed field gradients is employed,

and are phase-modulated data that differ only in the

apparent sign of the evolution frequency in the indirect
dimension, i.e., expð�i2pd1t1Þ. Amplitude modulation
results from conventional phase cycling, and yields, as is

well known, sets of signals like sinð2pd1t1Þ and

cosð2pd1t1Þ. By combining either of these pairs of data
sets, as described later, a virtual signal of twice the

length in t1 results. This doubling scheme is related to
the mirror image LP method, but is carried out directly

in the time-domain so that the noise in the doubled
signal is uncorrelated, rather than reflected. The FDM

treatment is an intrinsic 2D analysis rather than a trace-

by-trace 1D analysis, which has consequences for the

separation of partially overlapping peaks. High quality

2D spectra can be obtained with a single calculation

using the regularized FDM algorithm, FDM2K, de-

scribed previously [12]. Application to CT-HSQC spec-

tra of human ubiquitin shows that much shorter
constant time periods can be used than typically em-

ployed in these experiments, while still accurately iden-

tifying the chemical shifts of the vast majority of the

peaks. Local crowding in the 2D plane makes it prob-

lematical to identify individual peaks correctly using

FDM2K, but there is good reason to believe that none

of the alternative methods in the literature will succeed

in identifying the true number of peaks, and their
chemical shifts, under these circumstances. The behavior

of the spectrum as a function of the number of available

data points is studied using model signals, to show how

convergence of the features evolves. Noisy data turns

out to be a tougher case to quantify in the theory, but at

least for 1mM concentrations at 500MHz using a

conventional room temperature probe, it appears that

sensitivity is more than adequate for FDM2K to be used
routinely in CT experiments on uniformly labeled pro-

teins. A series of increasingly noisy protein spectra is

used to illustrate the degradation in performance that

noise causes.

The discussion here is also meant to consolidate,

clarify, and qualitatively describe the recent progress

that we have made with multidimensional FDM. Per-

fectly plausible ways of treating the nD signal simply fail
to give reasonable results. The failures are, nevertheless,

quite important for a proper understanding of the po-

tential of FDM, and have taken considerable effort to

assemble into an organized picture.

2. Theory

FDM is a basis set method that makes assumptions

about the form of the spectrum: it is assumed to consist

of a finite number of Lorentzian lines. When the as-

sumptions are closely enough satisfied and the basis is

sufficiently large, essentially exact results can be ob-

tained for peak positions, widths, amplitudes, and

phases. There is an immediate analogy to quantum

chemistry calculations [13], in which one can expand the
basis set size indefinitely, if one is willing to contemplate

an increasingly expensive computation, thereby im-

proving accuracy for the energy. Unlike quantum

chemistry, in FDM the basis set functions are not

known per se. Rather it is assumed that matrix elements

of some operators have effectively been measured by

recording the free induction decay (FID). As it is a

matrix representation of a ‘‘Hamiltonian’’ that is diag-
onalized to calculate ‘‘energies,’’ it is not necessary to

know the underlying functions if one has a matrix rep-

resentation in a basis. Thus, there is no problem calcu-

lating frequencies of lines, assuming them to arise from

some effective evolution operator, if the appropriate

matrix representation is available. In FDM these matrix

elements originate solely from the measured time-do-

main data. If the number of measured points is too few,
then the basis size may be insufficient to calculate ac-

curate eigenvalues. If the noise level is high or the lines

depart severely from the Lorentzian assumption, then it

becomes ever more difficult to characterize the resulting

spectrum in terms of a finite number of Lorentzian

features. This has the effect of making the basis appear

to be too small, and lowers accuracy. Note, however,
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that these limitations are different in nature than the
time–frequency uncertainty principle, which draws a

strict veil over line positions, independent of the type of

signal or noise level. We can thus expect FDM to out-

perform FT when (i) the number of spectral features is

sufficiently small, so that they are described adequately

with the information content of the available data; (ii)

the features are nearly Lorentzian; and (iii) the noise

level is not too high. These are qualitative statements
that will be made more quantitative in what follows.

2.1. Basis set methods, eigenvalue problems, and 1D FDM

In many elegant treatments of model quantum me-

chanical problems, the eigenkets of the Hamiltonian can

be uncovered purely by operator techniques, in which

the commutation relations of the operators dictate the
number and kind of states. Thus, in the 1D simple

harmonic oscillator, use of the creation and annihilation

operators, ay and a, the number operator N ¼ aya, and
the commutation relations:

½a; ay� ¼ 1; ð1Þ

½N ; ay� ¼ ay; ð2Þ

½N ; a� ¼ �a ð3Þ
allow the complete ladder of energy eigenstates jni to be
built up systematically by applying ay iteratively to the
ground state, j0i [14]. Likewise, in conventional treat-
ments of angular momentum, the raising operator

Jþ ¼ Jx þ iJy ð4Þ
is used to build up the ð2jþ 1Þ joint eigenstates of J 2
and Jz, jjmi, for a particle of spin j, and to show these

states are bounded [15].
A very similar method is used to build up the prim-

itive basis vectors for 1D FDM. Starting with an ‘‘initial

state’’ U0 we iteratively apply an operator U that

translates states forward by one dwell time s, to generate
a collection of primitive basis functions that can be

imagined as ‘‘time like’’ in nature

Un ¼ UnU0: ð5Þ
We also assume that the complex-valued FID, sampled

instantaneously and discretely on a time grid, and
written as a list of complex numbers c0; c1; . . . ; cN�1 can

itself be written as a time autocorrelation function [16],

the complex symmetric inner product of the initial state

with a time-shifted state

ðU0jUnU0Þ ¼ ðU0jUnÞ � cn; ð6Þ
where ðUjWÞ ¼ ðWjUÞ defines a (non-Hermitian) com-
plex symmetric inner product between states U and W. It
is a simple matter to show that the requirement of a

square matrix representation, with no missing entries,
limits the size of the basis to M ¼ N=2 for data length N

[17,18]. As in the simpler cases of the harmonic oscilla-
tor and rigid rotor, the iterative construction of the basis

allows the problem to be solved abstractly, but unlike

those cases we cannot guarantee that the basis functions

are orthogonal to each other, normalized, or complete.

In addition, the ‘‘length’’ ðWjWÞ of a basis vector W can

be complex, a complication that is necessary to allow

peaks to acquire width and arbitrary phase (frequencies

and amplitudes are complex rather than real numbers).
The complex symmetric ‘‘Hamiltonian’’ X underlying

U ¼ expð�iXsÞ is also unknown, so that its eigenstates
must be uncovered by purely numerical means.

With a non-orthonormal basis, the usual matrix ei-

genvalue problem becomes a generalized eigenvalue

problem. If the M eigenfunctions of U are Yk and the
eigenvalues are uk then the symbolic eigenvalue problem

UYk ¼ ukYk ð7Þ
becomes, in the primitive basis, the generalized eigen-

value problem

Uð1ÞBk ¼ ukU
ð0ÞBk; ð8Þ

where the complex symmetric matrices U have matrix

elements Unm ¼ Umn that are simply the recorded data

points [18]:

Uð0Þ
nm ¼ UnjUmð Þ ¼ UnU0jUmU0ð Þ ¼ U0jUmþnU0ð Þ

¼ cnþm; ð9Þ

Uð1Þ
nm ¼ UnjUUmð Þ ¼ UnjUmþ1ð Þ ¼ cnþmþ1 ð10Þ
and the last equalities result from the application of Eq.

(6). Note that if the set fUkg were orthonormal then Uð0Þ

would be the identity matrix, and could be omitted from

Eq. (8) altogether. With the eigenvalues and eigenvec-

tors from Eq. (7) in hand, Eq. (6) can be expressed in the

form

cn ¼ U0jUnU0ð Þ ¼
X
k

U0jYkð Þunk YkjU0ð Þ

¼
X
k

U0jYkð Þ2unk ; ð11Þ

which looks exactly like a nonlinear fit of the FID in

terms of complex sinusoids

cn ¼
X
k

dk expð�insxkÞ ¼
X
k

dkunk ð12Þ

once we make the identification

dk ¼ U0jYkð Þ2 ð13Þ

between the eigenvectors and the line intensity and

phase. For a noiseless model signal that satisfies the

Lorentzian assumption exactly, and with a basis size

that exceeds the true number of peaks, it can be shown

in fact that FDM gives an exact solution to the fitting

problem of Eq. (12). However, in all other cases, even

though an exact fit of the N complex data points can

76 J. Chen et al. / Journal of Magnetic Resonance 162 (2003) 74–89



usually be obtained using M ¼ N=2 basis functions,
there is no guarantee that even a perfect fit of a given

finite time segment of data makes the form obtained

suitable for spectral estimation. In particular, if the basis

is too small then the spectral features calculated by

FDM can be in substantial error, even if the signal

conforms exactly to the assumed model. Therefore, it is

usually essential to analyze a spectral region several

times, using varying basis size, to ensure that conver-
gence has been achieved. For a general nD signal there is

no proof of a general fit unless the Lorentzian assump-

tion is satisfied exactly and the basis is sufficiently large.

2.2. Fourier bases

Oftentimes in quantum mechanics the basis functions

that are most easily constructed in the first instance are
not the best ones to solve a particular problem. For

example, in a system of N coupled spin-1/2 particles the

2N tensor product states ja1 � � � aN i; . . . ; jb1 � � � bN i are
the most natural to set up. But the fact that states with

different total magnetic quantum number are not mixed

by the high-resolution spin Hamiltonian can be used to

diagonalize a number of smaller submatrices. The weak

coupling approximation, when appropriate, results in
further simplification. This kind of legerdemain lets

NMR spin simulation programs handle a much larger

number of spins. In an analogous way, the primitive

basis functions Un are not the best choice to obtain

frequency positions of peaks, and linear combinations

of them can be taken to improve the structure of

the problem and limit the size of the matrix problem

by neglecting unimportant far off-diagonal matrix
elements.

Basically, it is not profitable to try to obtain a fit of

even a 1D FID using the time-like basis functions Un

because the size of the U matrices becomes utterly

enormous for any realistic data set [18]. Instead, a fre-

quency is imposed by taking the Fourier transform of

the Un, picking some frequency position fj within the
spectral width:

Wj ¼
X
n

exp
�
� 2pifjns

�
Un: ð14Þ

To cover the whole Nyquist range, these frequencies fj
are laid down in an even grid across the entire spectrum,

at about half the density that would result from a DFT

(without zero filling). Very much in the same way that

the intensity of a particular frequency point in the FT

spectrum is usually dominated mostly by nearby peaks,
so the ‘‘frequency-like’’ basis functions Wj are domi-

nated mostly by nearby eigenfunctions Yk. Turning this
around, one may assume that a given eigenfunction can

be accurately represented by a small linear combination

of nearby basis functions Wj in a suitably small spectral

window centered on the region of interest. This in turn

allows the potentially giant generalized eigenvalue
problem to be broken down into a series of much

smaller problems that can be handled efficiently. The

window is moved through the spectrum, usually with

50% overlap, and the calculated spectral regions are

added up with some weighting, which we have chosen,

after some experimentation, as a cos2 h function with
�p=26 h6 p=2 across the window. These features are
shown schematically in Fig. 1. This filtering of the basis

Fig. 1. Fitting a 1D spectral region with a series of three 1D windows.

The narrowband window basis is set up over a grid of frequencies fj
that span the region of interest, windows #1, #2, and #3 in this ex-

ample. Other basis functions are filtered out, or replaced with a much

smaller number of diffuse functions [19]. An alternative way to take

partial account of peaks outside the window is to increase, slightly, the

basis density within the window, by about 10% or so. Diagonalization

in the window #1 basis results in a list of eigenvalues and eigenvectors

that are used to produce the FDM spectral estimate of the window #1

region. The individual entries may be a function of the exact window

size, but the spectrum itself is fairly independent of the window details.

Accuracy at the edges of the window is less, so the calculated spectrum

is weighted by a cos2 h function, as shown, to smoothly attenuate these
regions. The window is then shifted by half its width, to give window

#2, and the whole procedure repeated. Summing the individual

weighted windows produces the FDM spectral estimate. A fourth

window, wrapping around the edges of the spectrum, would be needed

to complete the estimate. Note that almost every line is calculated at

least twice, so that the line list is redundant. It is tedious, however, to

try to match and delete entries that are numerically close, but distinct,

frequencies which may, or may not, refer to the same line. Broad or

intense lines outside the window, whose spectral contribution is ac-

curately reflected inside, would require some sort of special treatment.

Their actual positions and widths are not particularly accurate except

to produce tails within the current window. Occasionally they do not

actually exist at all, being fictional lines produced by the limitation

of the full matrix problem to the window basis. Very narrow features

of small integral may refer to noise, so some very slight line broadening

is always applied to limit the sharpness of lines before the spectral

estimate is computed.
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states with respect to frequency, followed by diagonal-
ization in the smaller basis, is the origin of the name

filter diagonalization [16].

Note that while the basis functions are filtered, the

signal itself is not. If a large peak outside the window is

contributing a significant baseline component to the

region under consideration, it is still represented by the

window basis, and the baseline within the window is well

matched. That is, after the diagonalization at least one
eigenvalue will refer to a frequency outside the window.

It is possible to augment the window basis with a

number of rather delocalized basis functions that can

describe features outside the window more accurately,

yet still give an overall eigenvalue problem that is not

too large to handle. This multi-scale basis and its im-

plementation have been described in detail previously

[19]. It is unwise to tamper with the signal itself, by
digital filtering for example [20], as the dispersion-mode

line shape extends well away from the peak position. Its

truncation in the frequency domain to try to generate a

smaller pseudo-FID, by inverse Fourier transformation

of just the window spectral region [20], leads to non-

physical contributions to the pseudo-signal. For the

same reason, it is unwise to try to delete ‘‘spurious’’

entries from the FDM line list. A few may have fre-
quencies outside the current window, and with large

amplitudes and/or large widths and/or phases that seem

to disagree with what one would expect from a genuine

signal peak. However, they may be accurately charac-

terizing the slow variation of the baseline or non-

Lorentzian features within the window. A set of spectra

that differ only slightly, say by different noise realiza-

tions, can be characterized by rather different lists of
peaks, so that while the spectrum produced by FDM is a

stable quantity, the individual eigenvalues and eigen-

vectors need not be. Producing a unique, reliable, and

physically meaningful line list for an nD signal is ap-

parently only possible in special cases, when it is already

fairly obvious what the correct entries should be. Con-

ventional peak picking of an FDM spectral region, after

all the contributing windows have been processed,
summed, and digitized with appropriate smoothing, is a

usable workaround that avoids giving the specific real-

ization of the line list any particular significance, but is

in principle less accurate.

A profitable way to look at FDM is simply to con-

sider other ways of attempting the fitting problem.

There are many possibilities, but most are encompassed

within two extremes. One approach could be a nonlinear
least squares algorithm, directly in the frequency do-

main [21,22]. First compute the FT spectrum, with its

resolution limited by the time–frequency uncertainty

principle, and then consider a small region of the spec-

trum, attempting to fit it with some unknown linear

combination of Lorentzians, convoluted with the sinc-

function line shape due to the finite sampling time. For

example, one could locally peak pick the spectrum and
then try to adjust preliminary line positions, phases and

intensities to obtain a good fit. This approach is ham-

pered by tremendous problems with myriad local min-

ima [22]. There is an apparently arbitrary choice of the

number of lines used in the fit; the question of how to

handle baseline roll, from peaks outside the area of

consideration, is next on the list. Finally, the extent to

which unresolved peaks can appear, for example, with
huge intensity and opposite phases, etc., is hard to

handle, so the whole approach is unlikely to be generally

useful except in simple cases.

A second approach is to fit directly in the time do-

main using complex exponentials with damping. This is

what FDM with the primitive basis functions attempts

to do, and is also the goal of parametric LP. There is no

problem in principle with local minima, because the
formulation as a linear algebra problem guarantees, in

exact arithmetic at least, a unique solution and a pre-

scription to obtain it. Here the problems are numerical,

namely the very large size of the linear algebra problem

that is created, and the ill-conditioned matrices that

have to be handled. This may create certain ambiguity

due to the ambiguity in the method of handling the large

and ill-posed numerical problem in finite arithmetic. In
1D FDM this ambiguity boils down to the choice of the

frequency window which, while it may affect the line list

(see above), hardly affects the estimated spectrum, which

is the quantity of interest. In addition, LP has nettle-

some problems with increasing exponentials (eigen-

values outside the unit circle in the complex plane).

These exponentials must be arbitrarily deleted, or flip-

ped to negative exponentials, before the linear least
squares problem for the intensities of the lines can be

solved. This leads to further problems that even the

primitive formulation of FDM does not face. The in-

tensities in FDM are not calculated in a separate step,

and so errors in the frequency or width of one feature do

not feed into the determination of the amplitude of

another one like they can in parametric LP. When there

are features like residual solvent signals, etc., contami-
nating the time-domain data, a global fit of the FID,

even were it computationally feasible, becomes distinctly

unattractive.

Against this backdrop, FDM is an attempt to capture

the best of both worlds, that is, to fit the time domain

data, but in the frequency domain. Small linear algebra

problems result, having unique solutions that can be

obtained without any advance knowledge, or even initial
guess, of the number of lines. Spectral windows con-

taining residual solvent do not even need to be pro-

cessed, so that many of the problems that would arise in

a global fit of the FID do not surface at all. It is this

conceptual sleight of hand that makes FDM particularly

powerful, and appealing. It also underscores that it is

the local density of basis functions that determines the
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ability to resolve closely spaced lines. For example,
oversampling the FID using a much larger spectral

width produces many more data points, and so many

more basis functions. However, the number of functions

per unit frequency remains fixed, as does the approxi-

mate local resolving power when applying FDM.

2.3. Multidimensional bases, spectra, and regularization

The 2D extension of FDM is based on the assump-

tion that there are two effective evolution operators U1
and U2 that commute. The iterative construction of the
basis functions is generalized according to [23,24]

Unm ¼ Un
1U

m
2 U00 ð15Þ

with n and m ranging up to � N1=2 and � N2=2, re-
spectively, showing that the number of basis functions

depends on the product of the number of recorded data

points. This is a key point of a multidimensional data
analysis approach, in which 2D basis functions are used

to describe 2D spectral features, 3D basis functions for

3D features, etc. Roughly speaking, the resolving power

of 2D FDM depends on the area in the 2D time domain

that has been measured rather than the individual linear

extent of the two dimensions, as would be the case with

FT analysis. This is a powerful argument in favor of an

integrated nD time to nD frequency approach, and ex-
plains why Fourier transformation along the longer of

the two time dimensions, as is routinely done in NMR

processing, may prove to be disadvantageous. Fig. 2, for

example, shows a simple case in which Fourier trans-

formation in the long dimension followed by 1D FDM

in the short dimension introduces line shape distortions,

whereas 2D FDM uncovers the correct peaks.

How can one tell whether a method is truly multidi-
mensional? One important key is whether all the data are

required to start the calculation. In conventional FT

spectroscopy, each t1 increment can be transformed to

an F2 spectrum as it is acquired, that is, there is no re-
quirement at all to have a complete set of interferograms

in order to carry out the analysis of the data in the other

time variable, t2. In 2D FDM, the matrix elements of the
evolution operators cannot be calculated using only part

of the time-domain data, say, along one of the time axes.

All the 2D time-domain data contributes to each matrix

element of the evolution operators, and there is thus no

factorization as in FT analysis.
While the potential resolving power of the 2D basis is

greater, so are the technical and numerical stumbling

blocks. Some of these have been discussed in some detail

previously [9–12]. They break down into the following

categories: (i) 2D FDM fits phase-modulated data to

phase-twist line shapes, but most recorded data consist

of complementary N- and P-type (or sin/cos) data sets;

(ii) when data is even moderately noisy, the phases of the
2D peaks can be slightly in error; (iii) while the fit to

phase-twist Lorentzian lines can be ‘‘converted’’ to ab-

sorption mode, the star-shaped contours that result are

not as clean as the elliptical contours familiar from

resolution-enhanced FT processing; (iv) there are ap-

parently many more ways for 2D data to depart strongly

from a small number of 2D phase-twists than there are

for a 1D data set to fail to fit well to 1D Lorentzians; (v)
it is no simple matter to identify the pair of frequencies

that are supposed to correspond to a particular 2D

feature—rather a list of all possible frequencies in each

of the dimensions is the output of the diagonalizations;

(vi) the U matrices can be extremely badly behaved

numerically, much more so than in the 1D case, so that

tiny perturbations of the input data result in large

changes in the computed spectrum, a case requiring
some sort of regularization; (vii) there could be some

question about how small a spectral region can be iso-

lated, i.e., how big the window basis should be for each

calculation; (viii) there may be some more general kind

of ‘‘uncertainty principle’’ when employing regulariza-

Fig. 2. Illustration of the difference between a direct 2D method and a 1D method applied to individual FT traces. (a) Two Lorentzian peaks. (b) The

result of 2D FDM using 50 time points in the vertical dimension, and only 2 time points in the horizontal dimension. Both peaks are accurately

obtained, as shown. (c) By contrast, Fourier transformation along the long dimension, followed by 1D FDM along the short dimension, produces

this contour plot, in which new non-existent features have been created. The difference is that the 2D FDM approach used 25 2D basis functions to fit

the region, whereas in the FT+1D FDM approach only a single basis function was allowed for each of the 50 individual traces that result from the

FT. A single basis function can result in only a single peak; the single frequency determined for each trace is a weighted mean of the two peaks,

resulting in the strange ridging behavior. This kind of distortion is always present whenever a series of 1D methods (e.g., LP) is used if the number of

points (or the filter length) in the short dimension is insufficient to characterize all the peaks on a given trace accurately. In this example, four points

would result in a good fit, as there are at most two peaks on each horizontal trace. In general, the requirement to have a sufficient 1D basis density on

the most crowded traces leads to a much larger data set than the 2D requirement to have enough local 2D basis functions.
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tion, in that closely spaced lines that are degenerate in
one of the frequency dimensions may tend to coalesce

into a single feature while resolution in an orthogonal

dimension improves.

We have dealt systematically with each of these as-

pects through a great deal of experimentation and trial-

and-error. While it is premature to claim that all the

issues have been resolved entirely there is, now, a clear

way to deal with most of them. With regard to point (i),
it seems that, for shorter data sets at least, a 2D gradi-

ent-selected spectrum with, say, 2N1 increments of either
purely N- or P-type would be far superior to comple-

mentary N- and P-type data with only N1 increments.
For the shorter data sets, a calculation is carried out for

the N-type data and P-type data separately, with the

phase-twist results then folded in the usual way to

obtain an absorption-mode spectrum. However, each
individual calculation suffers from

ffiffiffi
2

p
worse signal-to-

noise ratio (SNR) and, much more importantly, may fail

to converge because of insufficient basis size; doubling

the basis size in a single calculation may, however, lead

to nearly quantitative results. Unfortunately, there is not

yet any general scheme to process the two conventional

data sets jointly and use them in concert to pin down

peak positions more accurately. For CT data sets there
is such a scheme, described later.

With regard to points (ii) and (iii), it is possible to

artificially phase each peak by taking the real part of the

complex amplitude, Refdkg, assuming that the peaks
have known phase by controlling the experimental

conditions appropriately. All that survives in this ap-

proach is the algebraic sign of each peak. Likewise, it is

possible to replace each Lorentzian by a corresponding
Gaussian with the same full width at half maximum, and

the same integral. The effect of these substitutions is

shown in Fig. 3. Note that it is possible to plot a sepa-

rate ‘‘absorption mode’’ spectrum using Imfdkg, to
check for lines that might be badly out of phase. All

these manipulations clearly lead to an illegitimate

characterization of noise, other non-signal features, and

overlapping peaks where the phase of individual com-
ponents may be ill-defined, but we assume that these are

not typically of great interest or, more candidly, that we

cannot hope to extract them accurately. Furthermore,

the regularization procedure that we employ may

modify smaller features in any event.

With regard to point (iv), it seems that there is a

significant and fundamental difference in complexity

between 1D and nD signals. For example, a closely
spaced doublet can usually be satisfactorily fit as a sin-

glet at the mean frequency position in a 1D spectrum.

However, a square doublet of doublets in a 2D spectrum

cannot be fit well with, say, only three 2D peaks. One

obtains an unstable fit that completely lacks the under-

lying symmetry of the data. Even with just two peaks of

the same phase, the quality of the fit using a single peak

depends not only on their separation, but also on the

relative orientation of the displacement vector connect-

ing their frequency centers. When one considers that

some 2D spectra contain significant ‘‘t1-noise’’ that will
not even remotely conform to the model of a fixed

number of 2D phase-twist lines, it is clear that blind
application of FDM can sometimes lead to unexpected

results.

With regard to point (v), another complicating and

unpleasant feature emerges in the multidimensional

case. In 1D FDM the eigenvalue gives the position of

the line and the eigenvector gives the intensity, and there

is obviously no problem determining which eigenvalue

matches which eigenvector. In 2D FDM, two eigenvalue
problems arise but there is no straightforward simulta-

neous eigenvalue solver. Instead a list of eigenvalues and

eigenvectors are obtained for each dimension separately.

The eigenvectors along each dimension are, unfortu-

nately, essentially completely different except in the case

of a perfect model signal with vanishing noise. As a

result, we may obtain 100 F1 frequencies and 100 F2
frequencies as 1D projections in a 2D frequency win-
dow, but no simple way of identifying each of the true

frequency pairs. The solution to this problem is to for-

mulate the spectrum in terms of the 2D resolvent, i.e.,

adopt a formula for the spectrum that does not ever

require the identification of corresponding frequencies

or joint eigenvectors. In the 2D case the absorption

mode ‘‘aggressive spectrum’’ may be written [11],

Aðf1; f2Þ ¼
X
k1

X
k2

Re U0jY1k1ð Þ Y1k1
��Y2k2� �

Y2k2
��U0� �� �

� Im is1
1� u1k1e2pis1f1

� 	
Im

is2
1� u2k2e2pis2f2

� 	

ð16Þ

Fig. 3. Illustration of line shape transformation from slightly out of

phase Lorentzian to purely absorptive Gaussian, using a 1D example.

(a) Two Lorentzian peaks are shown. One is around 15� out of phase,
as well as being 10 times more intense and four times narrower than

the other one. The dip in the baseline makes the weaker peak hard to

contour. (b) Transformation to absorption mode Gaussian line shape.

Each Gaussian peak has the same full width at half maximum and the

same integral as the corresponding in-phase Lorentzian peak. It is

much easier to contour the weaker peak using the in-phase Gaussian

representation because of the lack of any dispersive line shape and the

narrow skirts of the Gaussian lines. Note, however, that noise and

non-Lorentzian spectral features may be accurately fit as a linear

combination of Lorentzian lines with various phases. In this case the

Gaussian representation may be misleading, especially after the out-

of-phase components are eliminated.
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and then the absorption Lorentzian lines converted into
corresponding 2D Gaussian peaks. Instead of the ex-

pected M peaks allowed by the size of the basis, a total

of M2 peaks results from Eq. (16). Many of these are of

vanishing intensity. However some are not, and are

numerical artifacts that are the focus of point (vi). It is

possible to compute a complex spectrum from Eq. (16)

although it has, of course, phase-twist line shapes.

With regard to point (vi), the matrices involved in 2D
FDM can be poorly behaved numerically, correspond-

ing to a so-called ill-posed problem. Because the number

of basis functions is large, it may greatly exceed the

number of local peaks. This overcompleteness makes all

U matrices close to singular. On the other hand, the

restriction of the complete set of 2D Fourier basis

functions to a local 2D window creates a potentially

incomplete basis. So, the basis for the matrix represen-
tations may be both overcomplete and incomplete, and

the true situation may vary from window to window.

Add to this the confounding influence of noise, that

cannot be efficiently characterized as 2D phase-twist

Lorentzians, and the sensitivity to the exact parameters

of the FDM calculation (window size, signal length

used, etc.) emerges. Regularization is a partial cure for

these kinds of problems, and consists of modifying the
exact, and sensitive, solution to a more robust regular

solution derived from a modified problem that employs

some constraints on what constitutes an acceptable an-

swer. The very simple approach that we have invented is

to modify the generalized eigenvalue problem to the

form [12]

Uð0ÞyUð1ÞBk ¼ uk Uð0ÞyUð0Þ

þ q2

�
Bk ð17Þ

in which the singularity of the overlap matrix, and the

joint null space of the two matrices, is effectively con-

trolled by the non-negative regularization parameter q2.
There is a clear analogy to Tikhonov regularization [25],

in which a similar structure is employed when solving

nearly singular linear systems but, as far as we know, the

formula in Eq. (17) has not been used before in gener-

alized eigenvalue problems. It works in many situations,

but is neither necessarily best nor most conservative.

There may be other, more sophisticated approaches

[26,27] to regularization of the generalized eigenvalue
problem that are superior, but at this time they remain

unproven for our application. Approximately speaking,

the major effect of q2 is to broaden all small signals, of
the order of the noise, into oblivion. Significant peaks

are also affected somewhat. The net result is a slightly

broadened ‘‘theoretical’’ spectrum of the more signifi-

cant features on a nearly noiseless base plane, making

contouring particularly easy. If a range of stability can
be found as q2 is increased from zero, then the spectra
are usually reliable. If no such range can be found then

the basis may be too small, and acquiring more data

may be the only option. Note that it is possible to get a

rough estimate of the correct value of q2 by processing a
‘‘blank’’ region of the 2D plane. The regularization

parameter is increased until contouring the blank region

shows only broad, smooth features of relatively small

amplitude. More sophisticated ways of tuning q2 can be
envisioned, and are under consideration as part of a

turnkey software package.

With regard to point (vii), some common sense must

be used in defining the boundaries of the window. It
makes no sense at all to consider a window smaller than,

or even comparable to, typical line widths. Doing so will

inevitably lead to errors in the computed spectrum.

Likewise, if the number of points along one dimension is

very small, it makes little sense to carve up the frequency

range along this dimension. The assumption that accu-

rate frequencies can be extracted from a small 2D win-

dow basis is only approximate, so that very small bases
lead to noticeable error. Conversely, while the very

largest generalized eigenvalue problem possible may

therefore seem attractive, there are numerical limits to

the reliability of the current library routines, and the

cubic scaling of the latter mean that smaller is, up to a

point, better both in terms of speed and reliability.

Typically the U matrices range in size from 100� 100 to
800� 800 for a 2D calculation, depending on the
number of time-domain data points involved. For ref-

erence, a 2D signal of size N1 � N2 ¼ 128� 2048 would
have a full basis size of 65,536, leading to matrices with

4:29� 109 matrix elements if a single calculation were
attempted without using windows.

Finally, with regard to point (viii) it seems that as-

suming the 2D spectrum consists of an exact linear su-

perposition of 2D phase-twist lines is equivalent to
assuming that the operators U1 and U2 commute. This
means that there is some compromise in the achievable

resolution that can be obtained when these assumptions

are untrue. It seems that a direct 2D method tends

naturally toward a kind of ‘‘minimum uncertainty’’

representation, in which closely spaced lines along one

dimension tend to merge together, while distinct shifts in

the other dimension are teased apart. This observation
may hinge on the particular regularization used in

FDM2K, or it may be a more fundamental limitation:

further research is needed.

2.4. Doubling scheme for CT experiments

As remarked earlier, the local basis density plays a

key role when it comes to resolving spectral features.
Assuming the acquisition time in the indirect dimension

is relatively short, so that relaxation is not leading to

large loss of signal, it would be advantageous to have a

purely phase modulated signal of twice the length, ra-

ther than a set of N- and P-type data. However, the

latter is an absolute must for FT processing, the most

conservative method, because otherwise phase-twist line
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shapes result. For most experiments, therefore, the op-
timum data for FDM and FT processing are different.

Until FDM proves itself to have similar reliability to the

FT, most experimentalists will not relish the all-or-

nothing proposition of acquiring one phase modulated

data set. Luckily, for the particular case of constant-

time signals in the indirect dimension, no compromise is

necessary. By simply concatenating the raw time-

domain data sets, with the N-type data reversed in time,
a continuous time-domain signal of twice the length

results. Assuming zero phase at t1 ¼ n1s1 ¼ 0, and
t2 ¼ n2s2 ¼ 0, which is readily achievable experimen-
tally, the P- and N-type signals for a single peak may be

written:

SPðn1s1;n2s2Þ ¼ exp½iðx2n2s2þx1n1s1Þ�;
SNðn1s1;n2s2Þ ¼ exp½iðx2n2s2�x1n1s1Þ�; n1s1 ¼ 0; . . . ;T ;

ð18Þ
where x2 is complex, but x1 is essentially real, as the
imaginary part vanishes in the CT dimension. In a

normal treatment the N-type frequencies appear to

evolve forward in time but with opposite algebraic sign.

Note, however, that we may consider them to evolve

with the same algebraic sign if instead the time incre-
ment s1 is reversed in the second data set. That is, by
preceding the P-type data set, in the time domain, with

the N-type data in reverse chronological order, a pseu-

do-signal with t1 ranging from �T to T results

SNPðn1s1; n2s2Þ ¼ exp½iðx2n2s2 þ x1n1s1Þ�;
n1s1 ¼ �T ; . . . ; T : ð19Þ

There are three advantages to this way of handling the

data. First, it is completely compatible with conven-
tional FT processing. Secondly, the CT data has, ne-

glecting noise and spectrometer instability, nearly

perfect Lorentzian line shape in the CT dimension. This

means that the FDM model is very efficient. Finally, the

doubling scheme doubles the number of basis functions

and allows a single calculation, with the best chance of

success, to be performed. Unfortunately, for real-time

evolution, in which the x1 frequencies are also complex,
reversing the ordering does not correspond to a reversal

in time: the imaginary part of x1 would also have to
change sign, and it does not do so. Note that no as-

sumption that x1 is actually real is used in the FDM
algorithm when the doubled data set is processed.

Eigenvalues both inside and outside the unit circle are

always produced when analyzing the data. The correct

way to handle these to produce the best spectral estimate
has already been described in great detail [11].

Only two modifications to existing FDM code need

to be made to handle the doubled CT signals from

conventional N- and P-type data. First, both data sets

usually have a t1 ¼ 0 increment. These are averaged to
arrive at the center point of the NP data set. The basis

size is thus not quite doubled due to this redundancy.
Secondly, it is important to take proper account of the

true time origin when performing the Fourier transfor-

mation to the window basis matrix elements. Practically

speaking, the matrix elements UðpÞ
nm can be computed as

previously described [9] and then a phase factor

expðiunmT Þ is used to take into account the shifted time
origin.

2.5. Numerical experiments

Numerical studies on model signals plus noise have

the advantage that one knows, exactly, the correct an-

swer. As long as this information is not employed in any

way by the algorithm, model data can be used as an

objective benchmark by competing methods. We have

made an attempt to objectify the performance of 2D
FDM2K by examining model N- and P-type signals

from a hypothetical constant time experiment, including

various amounts of uncorrelated random noise. Fig. 4

shows a model spectrum meant to mimic a section of a

CT-HSQC spectrum. There are 13 peaks of identical

integral, with non-zero and similar line widths in F2 and
zero line width in F1. The SNR is extremely high,

around 1000:1 in the time domain. The exact spectrum
(a) has been line broadened in F1 to roughly the mean
width in F2 to allow meaningful contours to be drawn.
The absorption mode DFT spectrum is shown in Fig.

4b, from a pair of N- and P-type data with size 10� 10.
Cosine apodization was used to limit the sinc-function

wiggles and zero-filling to 512� 512 points was used to
obtain smooth interpolated contours. Some of the peaks

are resolved, but others are too close to distinguish. In
Fig. 4c the pseudo-absorption spectrum (512� 512)
from the 10� 10 time-domain P-type data set is shown,
using Eq. (16). Many of the peaks are obtained quan-

titatively, but local crowding results in several pairs of

peaks being fit as a single broader peak. Note in addi-

tion that the apparent width of the single feature is less

than the separation of the two genuine peaks. Convo-

luting this spectrum with the transform-limited line
shape still gives a good match to the actual DFT spec-

trum (data not shown), but this is clearly not sufficient

to guarantee that all the information has been obtained.

Finally, in Fig. 4d the effect of processing a single ‘‘NP’’

data set is shown. The larger basis size (and possibly

slightly better overall SNR) allows all the peaks to be

obtained correctly. With experimental data, of course,

one never knows in advance what the correct result is
supposed to be! However, by doing several FDM2K

calculations with different basis size, it is possible to

identify stable recurring features, and also features that

depend on the size of the basis. As long as a feature is

stable with respect to basis size and the regularization

parameter, our experience has been that it is quite ac-

curate and reliable.
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Fig. 5 is an attempt to be somewhat more realistic.

The same features are present as in Fig. 4, but now the
noise level is substantially higher, giving around 20:1

SNR in the time domain. A DFT of a pair of 18� 18
time-domain data sets shows resolution of most, but not

all, of the peaks in the absorption-mode spectrum, Fig.

5a. The FDM2K calculations all employ the doubling

scheme, but now the results are less impressive. Using

only a 10� 10 signal there is now inadequate informa-
tion for FDM2K to accurately identify all the peaks, as
shown in Fig. 5b. Increasing the signal size to 14� 14 in
Fig. 5c sharpens up most of the features. But using the

same 18� 18 data set as used in the DFT calculation
again allows all the features to be identified, as shown in

Fig. 5d, although there are still some errors in the widths

and intensities of the most crowded peaks. Further in-
crease in the signal size results in only minor improve-

ment to the spectrum, and is evidence that the

calculation has converged onto the true features.

3. Experimental

All the 1H–13C CT-HSQC spectra shown were ob-
tained using a 500MHz Varian UnityPlus spectrometer,

with a standard 5mm HCN triple resonance probe. The

sample was 700 ll of a 1mM solution of 100% doubly

labeled (13C and 15N) human ubiquitin in D2O (VLI

Fig. 4. A study of a model 2D signal with a high SNR of 1000:1 (first point) in the time domain. For such truncated data the true frequency domain

SNR is somewhat ambiguous because there is essentially no baseline region in the FT spectrum. (a) The exact spectrum consists of 13 purely Lo-

rentzian peaks with the positions shown and with line widths in the range 2:2� 0:2Hz (at random) in F2 and 0Hz in F1 modeling a constant time
signal. The spectral region is 1 kHz by 1 kHz, so that the peaks are narrow enough that they are difficult to represent adequately with contours. The

lines have been broadened by 2Hz in F1 to allow visualization of the 512� 512 spectrum. (b) The absorption mode DFT spectrum of a 10� 10 2D
FID. Cosine apodization in both dimensions has been used to avoid very large truncation artifacts. The peaks show line widths in both dimensions of

over 100Hz, making it impossible to resolve all the features. Zero filling to a 512� 512 data matrix has been employed to obtain smooth contours. (c)
The FDM result with the same 10� 10 data set, using only the P-type data and Eq. (16) to construct the 512� 512 spectrum. A single window with
25 2D basis functions (a 5� 5 grid) was used. Many of the lines are extracted quantitatively, but a few close pairs are fit as a single broader feature.
(d) The FDM result with the same 10� 10 data set, using the doubling scheme described to create the full NP signal. A single window with 45 2D
basis functions (a 9� 5 grid) was used. The FDM pseudo-absorption spectrum is nearly indistinguishable from the exact spectrum, 4(a), showing the

improved resolution offered by the NP doubling scheme.

J. Chen et al. / Journal of Magnetic Resonance 162 (2003) 74–89 83



Research) at 24 �C. A slightly modified pulse sequence,
shown in Fig. 6, was used to obtain the results. The

partly selective noco and co pulses, of duration 200 ls,
either invert the aliphatic region of the carbon-13 spec-

trum and not the carbonyls, or vice versa. They will be

explicated in a related publication. Their only role here

is to provide a spectrum with zero phase correction in

F1, with no Bloch-Siegert phase [28] shifts, and no loss of
signal intensity over the slightly inhomogeneous radio-

frequency field on the carbon-13 channel. Their short

pulse width ensures that little of the 2T period is wasted.

As the brief gradients during the longitudinal states

of the INEPT and reverse INEPT steps were enough to

suppress the residual HDO resonance, amplitude mod-

ulated data sets were in fact acquired. The cosine and

sine data sets required two scans each to complete the
simplest difference phase cycle to select the 13C-bearing

protons. These two data sets were then combined to

form pseudo-N- and P-type data sets, which were then

processed as above. Calculations with actual gradient-

selected data showed no significant difference as long as

the experiments were done carefully and the same

number of increments obtained. For ultra-short CT

experiments, the loss of time during the actual pulsed

field gradient is disadvantageous.

3.1. Noise performance

The numerical experiments of the last section carry

over fairly well to actual CT-HSQC data. Fig. 7 shows a

zoomed section, in a crowded portion of the Ca region,

of a 1H–13C CT-HSQC spectrum. The spectra in Fig. 7

have been obtained using only two scans per increment

for the N- and P-type data sets, and with a short con-
stant time 2T ¼ 7:5ms, well below the null in the CT
transfer function at � 13ms, and almost a factor of four

Fig. 5. A study of the same model 2D signal as Fig. 4 but with a low SNR of 20:1 (first point) in the time domain. (a) A contour plot of the 512� 512
absorption mode DFT spectrum obtained from an 18� 18 FID, with the contours drawn low enough to show some of the noise. (b) The FDM result
with a 10� 10 data set, using the NP doubling scheme. A single window with 45 2D basis functions (a 9� 5 grid) was used. In contrast to Fig. 1d, the
noisier data now requires larger regularization, resulting in broader peaks. Not all the peaks can be resolved, and the intensities are less reliable. (c)

The FDM result with a 14� 14 data set, using the NP doubling scheme. A single window with 91 2D basis functions (a 13� 7 grid) was used. There
is great improvement compared with (b) but not all the peaks are resolved. (d) The FDM2K result with the same 18� 18 data set as (a), using the NP
doubling scheme. A single window with 153 2D basis functions (a 17� 9 grid) was used.
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shorter than the usual time 2T ¼ 1=1JCC � 26:4ms that
is typically used in these experiments. The spectral width

in F1 covered the full carbon-13 chemical shift range,
leading to 90 increments each of N- and P-type data.

The spectra required about 7min of instrument time to

obtain. Lowering the power of the last proton 90� pulse
has mimicked the effect of poorer sensitivity. The 2D FT

spectra are on the top panels and the 2D FDM2K

spectra from the same data are directly underneath. The
FT spectrum from the FID of the first increment, with

some blank downfield region included for a noise ref-

erence, is shown along the top of each of the series.

As the effective read pulse is reduced to 11� and fi-
nally 5�, corresponding to a relative SNR 5 and 10 times
lower, respectively, it is clear from the first increment

that the data becomes quite noisy. Nevertheless,

FDM2K with the new doubling scheme behaves re-
markably predictably, with the achievable resolution

gradually diminishing, and weaker features disappearing

along with the noise when the regularization is used.

There is clearly no catastrophic loss of performance, and

the resolution in many regions is always preferable to

the FT result. The fine structure along the proton di-

mension, a known result of a flip angle effect [29] when

the small flip angle read pulses are used, is blurred away
by the regularization. The result is a set of nearly

structureless ellipses centered on the correct chemical

shifts. Particularly with the noisier spectra, attempts to

resolve the proton multiplet structure, and simulta-

neously separate the close carbon-13 shifts, have not

been successful.

3.2. Ultra-short constant time performance

Attenuation of Ca magnetization during the constant

time period is a common problem in larger proteins,

where the T2 losses can be severe. However, using larger
B0 fields in conjunction with FDM2K may allow very

short constant time periods, greatly improving sensitiv-

ity without the need for deuteration. This is in contrast

to the usual fixed value of 2T � 26:4ms, independent of
the field strength. The difference is that by operating

with shorter periods than the null condition at 13ms, the

delay can be shortened as much as we like, fixing only

the number of increments obtained. For example, if a

decent CT-HSQC spectrum can be obtained using

2T ¼ 4:25ms at 500MHz, then only 2.6ms would be
required at 800MHz. The relative basis function density

versus the number of local peaks is identical. However,
there can be a great improvement in performance both

on account of the superior intrinsic sensitivity of the

higher field strength, and the reduction in relaxation

losses. The local nature of the convergence of FDM

means that many of the spectral regions can be essen-

tially completely resolved, leaving a few dense regions

that may require a longer experiment, some editing

techniques, or a higher-dimensional experiment to make
headway. Alternatively, the same 4.25ms experiment

may, at higher field, allow completely converged spectra

to be obtained. The ability to achieve high resolution

with very short constant time periods could establish

FDM as a key component in successful NMR of larger

proteins at high field.

Fig. 6. Modified CT-HSQC pulse sequence to observe correlations between Ha and Ca spins in a protein. Aside from the minor addition of a pair of

partly selective inversion pulses, denoted noco and co, and the broadband inversion pulses (BIPs), denoted with open scored icons, the pulse sequence

is standard fare. Narrow filled icons are conventional 90� pulses, and wide filled icons are conventional 180� pulses. The 200ls noco and co pulses

have been developed for ultra-short CT experiments, in which longer pulses reduce the available number of increments. They work to invert the

aliphatic region of the 13C spectrum without inverting the carbonyl region (noco) or vice-versa (co). The BIPs cleanly invert the entire chemical shift

range of the indicated nucleus. All these pulses show superb compensation for RF inhomogeneity. The proton 90� time was 10 ls and the carbon-13
90� time was 15 ls. The co and noco shaped pulses are applied with a maximum of 13 kHz; the other pulses are applied at full power. All the spectra
shown result from two scans per increment, in which the phase u2 is 0� and 90�, and the receiver phase is 2u1 The phase u1 of the first carbon-13 90�
pulse is advanced inverted as t1 is incremented, and the sin/cos data acquired according to the States-TPPI scheme. By using the pair of partly
selective 180 s, all phase shifts are removed, leading to a spectrum with zero phase correction in the indirect dimension.
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Human ubiquitin is not a rapidly relaxing protein, but

can be studied simply to assess the degree of separation

of the resonances that can be obtained with ultra-short

constant times. Fig. 8a shows the conventional absorp-

tion-mode spectrum in the Ca region of the CT-HSQC

spectrum using 2T ¼ 26:4ms and the pulse sequence of
Fig. 6. Two scans per increment for the N- and P-type

data were used. This is our reference spectrum for the
study. Many of the 2D peaks are clearly resolved, with a

couple of denser regions. In the right-hand panel, Fig.

8b, the FT spectrum obtained with 2T ¼ 4:3ms is
shown. Many of the distinct peaks have coalesced be-

cause of the reduced resolution along the F1 dimension.
In Fig. 8c the result of processing the P-type data only is

shown for the 4.25ms data set, using the ‘‘aggressive’’

formula of Eq. (16) and Gaussian line shapes. A similar

result was obtained with the N-type data. The spectrum

shown is sensitive to changes in the regularization pa-

rameter, as well as other parameters of the FDM cal-

culation (exact signal length, exact window size, etc.)

and would not be considered reliable. Many regions of

the spectrum remain unresolved, as the basis density is

apparently too low to capture the local number of

peaks. There are only eight basis functions along the Ca

dimension in the region displayed. Finally in Fig. 8d the

FDM2K result using the same data, but now with

doubling, is displayed. Clearly the NP signal is a case

where the whole is greater than the sum of the parts.

Many of the regions display essentially identical reso-

lution to the reference FT experiment. In the most

crowded region the basis function density is still insuf-

ficient to characterize all the local 2D peaks, and so a

Fig. 7. Demonstration of the noise performance of FDM2K. The top traces show the FT of the FID from the first increment, with some downfield

region included to show the noise level. The contour plots below show the 2D FT (top series) and 2D FDM2K (bottom series) spectra. The pulse

sequence of Fig. 6 has been used with the power of the 10 ls read-out proton 90� pulse attenuated to achieve the desired flip angle. The 2D FT spectra
are shown in the top series, and the 2D FDM2K spectra, from the doubled NP data set, are shown directly underneath. Regularization has been

increased as the SNR decreases from left to right. Two scans per increment were recorded for the total of 90 increments, for the sine and cosine data

sets: (a) 90� read pulse, (b) 11� read pulse ()18 dB), (c) 5� read pulse ()25 dB).
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distorted spectrum with some wide features is obtained.

There are ways to conclusively show that regions like

this are not converged, but no simple and reliable way to

correct the inaccurate results. For example, a true res-

onance should have a line width of nearly zero along the

F1 dimension, with errors that depend on the noise level
and quality of the data. The ‘‘unconverged’’ features

have line widths that are quite large, and that are sen-

sitive to the exact parameters of the FDM calculation,

allowing them to be flagged as unreliable. Another ap-

proach is to use the FDM parameters to simulate the FT

spectrum, and compare the result with the actual DFT

of the data. Ideally, only featureless noise should remain

after subtraction, if a perfect fit is obtained. In uncon-

verged windows, a substantial residual may be used as
evidence of untrustworthy local spectral features. We

will describe these validation experiments in a further

series of papers on practical aspects of FDM.

Fig. 8. Ultra-short constant time spectra compared with conventional measurement. (a) 2D FT spectrum using 26.4ms constant time. This is the

reference spectrum. (b) 2D FT spectrum using 4.25ms constant time. There is a predictable loss of resolution along the indirect dimension, so that

many of the peaks cannot be cleanly resolved. (c) 2D FDM2K spectrum using the same 4.25ms data set as in (b), processing only the P-type data.

This 2D spectrum is not stable, in many regions, with respect to changes in regularization parameter and would not be considered reliable. (d) Effect

of the NP doubling scheme, again using the 4.25ms data set. There is a vast improvement in performance compared with (c). Almost every region of

this spectrum is stable, the exception being the most crowded area. Comparison of the reference spectrum, (a), shows that the peaks that are resolved

are also very accurately obtained by FDM2K. The peaks superimpose almost perfectly on those from the much longer experiment that gives the FT

spectrum. Note that all these spectra were obtained using only two scans per increment. This led to only 50 increments for the 4.25ms experiment,

making this an ultra-fast acquisition as well—less than 4min.
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The calculation of the displayed regions using
FDM2K is completed in a matter of a few minutes on

either an AMD XP 1800+ Athlon PC running Linux, or

an older 533 MHz DEC Alpha workstation. These are

certainly inexpensive computers. Calculation of the en-

tire 2D spectrum takes of the order of 2–3 h depending

on the size of the window basis. As many regions are

completely devoid of signals, however, a more realistic

estimate is around 45min for the relevant areas. With an
appropriate parallel architecture, the computing time

could be a few minutes for virtually any size data set, as

each window is a separate job.

4. Conclusions

Direct multidimensional spectral estimation is a po-
tentially useful adjunct to more conventional multidi-

mensional FT spectral estimation. The resolution in a

direct 2D method depends mostly on the total number

of basis functions per unit area frequency, which in turn

depends on the area in the time domain that has been

measured. Long time acquisition in one dimension can

thus be parlayed into better resolution along an or-

thogonal dimension for which it may be time-consum-
ing, or impossible, to obtain a long data record. This is

exactly the situation that pertains in heteronuclear

multidimensional NMR experiments, especially those

limited to a certain constant time period. When the

number of 2D basis functions can dominate the true

number of 2D peaks, a good fit can be obtained if the

lines conform to the model of 2D phase-twist Lorent-

zians. For many proteins under typical conditions, the
lines appear to be sufficiently well characterized in this

way.

It is important to stress that amplitude modulated

data are unfavorable for 2D FDM precisely because the

number of spectral peaks is doubled compared with the

corresponding phase modulated data set, resulting in

poorer convergence. Thus, when amplitude modulated

data are obtained, they should be first combined into N-
and P-type data. It appears that processing the N- and

P-type independent data sets, and then combining the

results, is not greatly superior to just processing one of

them. In particular, bad local regions remain unre-

solved. The SNR effect of processing separate N- and P-

type data sets by FDM, followed by co-addition, is more

complex than the
ffiffiffi
2

p
gain in sensitivity as in the FT

case. The regularization step effectively suppresses the
noise and all signals of about the same size, and this

regularization is applied to the separate, and noisier,

data sets before the results are combined. Line shapes

and intensities for more significant peaks may improve

somewhat, however.

Conversely, the constant time experiment is an espe-

cially favorable case for FDM because the basis size can

actually be doubled while the number of peaks remains
the same: in the NP data set all the information is put to

use at once. There is a clear and telling improvement in

resolution by the doubling of the basis size. In addition,

the instrumental line shape in the indirect dimension is

suppressed by the constant time evolution, resulting in

peaks that match the Lorentzian model perfectly in

at least one of the dimensions. This seems to be an

important factor in obtaining the best results.
Optimization of nD NMR experiments has always

presupposed that FT processing will be used to arrive at

the nD spectrum. For example, 3D NMR is quite often

employed because decent digital resolution can be ob-

tained without extravagant experiment time. As such, a

series of different 3D experiments may be used to cor-

relate all the desired chemical shifts, and comparing

planes from experiments taken at different times is
usually mandatory to complete the assignment. Whether

this is the most profitable use of human and instrument

time, once nD FDM2K is reduced to practice, is cer-

tainly open to question. In FDM the digital resolution

of individual dimensions has no direct relation to the

ultimate spectral resolution. Further, we have shown

here that the best data set is the one that gives the largest

basis set. Two different 3D experiments do not lend
themselves to this maximal basis set in the same way

that one 4D experiment does. While extra delays may

lead to some additional losses in the higher-dimensional

experiment, there is also a gain in sensitivity by having

all the data in one spectrum rather than divided up be-

tween several: this is important when regularization is

employed. In 3D experiments where a set of nuclei are

merely used to transfer magnetization, for example the
CBCA(CO)NH pulse sequence [30], the delays are al-

ready present, and removing the parentheses to record

the carbonyl chemical shift in a 4D experiment will be

more sensitive and highly advantageous.

In closing, it is interesting to note that the time it

takes to identify M random-frequency peaks accurately

in an nD experiment depends on M but not n when

FDM is employed. Indeed, as local spectral crowding is
the only limiting factor once sufficient SNR is achieved,

increasing the dimensionality of the experiment, so that

the resonances are dispersed as widely as possible in

frequency space, may result in a shorter overall experi-

ment. For backbone assignment experiments on pro-

teins with known primary structure, the expected value

of M is known beforehand, so that the time required to

obtain a converged high-dimensional FDM spectrum
should be predictable, and scale with M. With the SNR

of the first increment and the value ofM in hand, it may

be possible to semi-automate the data acquisition of

even quite complex experiments. We intend to test this

assertion in a future series of publications on the efficacy

of FDM in 3D, 4D, and 5D experiments that have been

specifically designed with the method in mind.
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